parent
577491fc5a
commit
39ed535461
@ -1,4 +1,5 @@ |
||||
myenv |
||||
__pycache__ |
||||
dups.txt |
||||
alike.txt |
||||
invalid.txt |
||||
|
||||
@ -0,0 +1,427 @@ |
||||
import signal |
||||
import threading |
||||
import os |
||||
import sys |
||||
import xxhash |
||||
import cv2 |
||||
import numpy as np |
||||
import time |
||||
|
||||
""" |
||||
Copyright 2025 - Robert Strutts MIT License |
||||
|
||||
Key Optimizations: |
||||
|
||||
Multi-Scale Processing: |
||||
First alignment at low resolution (faster) |
||||
Final refinement at full resolution (accurate) |
||||
|
||||
Matrix Scaling: |
||||
The translation components of the transformation matrix are scaled up |
||||
Rotation and scaling components remain the same |
||||
|
||||
Smart Downscaling: |
||||
Uses INTER_AREA interpolation which is ideal for size reduction |
||||
Maintains aspect ratio |
||||
|
||||
Performance Benefits: |
||||
Processing time scales with area, so 4x downscale = ~16x faster initial alignment |
||||
Memory usage significantly reduced |
||||
""" |
||||
|
||||
start = time.perf_counter() |
||||
|
||||
def kill_all(): |
||||
print("KILLING PROCESS") |
||||
os.kill(os.getpid(), signal.SIGKILL) # Force kernel-level termination |
||||
|
||||
def exit_handler(signum, frame): |
||||
threading.Thread(target=kill_all).start() # Run in separate thread |
||||
# CTRL+C will Exit NOW!!! |
||||
signal.signal(signal.SIGINT, exit_handler) |
||||
|
||||
def exit_timer(level): |
||||
end = time.perf_counter() |
||||
print(f"⏱ Execution took {end - start:.4f} seconds") |
||||
exit(level) |
||||
|
||||
class Timer: |
||||
def __init__(self, name=None): |
||||
self.name = name if name else "Timer" |
||||
self.start_time = None |
||||
self.end_time = None |
||||
|
||||
def __enter__(self): |
||||
self.start() |
||||
return self |
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb): |
||||
self.stop() |
||||
self.print_result() |
||||
|
||||
def start(self): |
||||
self.start_time = time.perf_counter() |
||||
|
||||
def stop(self): |
||||
self.end_time = time.perf_counter() |
||||
|
||||
def elapsed(self): |
||||
if self.start_time is None: |
||||
raise ValueError("Timer has not been started") |
||||
if self.end_time is None: |
||||
return time.perf_counter() - self.start_time |
||||
return self.end_time - self.start_time |
||||
|
||||
def print_result(self): |
||||
elapsed = self.elapsed() |
||||
print(f"{self.name}: ⏱ {elapsed:.6f} seconds") |
||||
|
||||
def align_with_downscaling(img1, img2, downscale_factor=4, try_common_rotations=True): |
||||
""" |
||||
Aligns images using a multi-scale approach with initial downscaling |
||||
|
||||
Args: |
||||
img1: Reference image (numpy array) |
||||
img2: Image to align (numpy array) |
||||
downscale_factor: How much to reduce size for initial alignment (e.g., 4 = 1/4 size) |
||||
try_common_rotations: Whether to test common rotations first |
||||
|
||||
Returns: |
||||
aligned_img: Aligned version of img2 |
||||
transform_matrix: Final transformation matrix |
||||
rotation_angle: Detected simple rotation (None if not found) |
||||
""" |
||||
# 1. First alignment at low resolution |
||||
with Timer("1st alignment at Low Res-Downsaling"): |
||||
small1 = downscale_image(img1, downscale_factor) |
||||
small2 = downscale_image(img2, downscale_factor) |
||||
print("Done downscaling...") |
||||
print("Please wait...Rotation starting.") |
||||
# Get initial alignment at low resolution |
||||
with Timer("2nd alignment at Low Res-Rotations"): |
||||
_, init_matrix, rotation_angle = align_with_ecc_and_rotation( |
||||
small1, small2, try_common_rotations |
||||
) |
||||
print("Done rotating low res image...") |
||||
if init_matrix is None: |
||||
return img2, None, None # Alignment failed |
||||
|
||||
# 2. Refine alignment at full resolution with initial estimate |
||||
# Apply the rotation if one was detected |
||||
if rotation_angle is not None: |
||||
img2 = rotate_image(img2, rotation_angle) |
||||
|
||||
with Timer("Scaling translation components"): |
||||
# Scale up the transformation matrix |
||||
full_matrix = init_matrix.copy() |
||||
full_matrix[:2, 2] *= downscale_factor # Scale translation components |
||||
print("Done scale-up/transform...") |
||||
with Timer("Convert images to grayscale"): |
||||
# Convert images to grayscale for final alignment |
||||
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) |
||||
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) |
||||
print("Done greyscale alignment...") |
||||
# Set criteria for final alignment |
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 500, 1e-6) |
||||
print("Please wait...ECC initial estimate.") |
||||
try: |
||||
with Timer("ECC init"): |
||||
# Run ECC with initial estimate |
||||
cc, full_matrix = cv2.findTransformECC( |
||||
gray1, gray2, full_matrix, cv2.MOTION_AFFINE, criteria |
||||
) |
||||
|
||||
with Timer("Apply final transformation to color image"): |
||||
# Apply final transformation to color image |
||||
aligned_img = cv2.warpAffine( |
||||
img2, full_matrix, (img1.shape[1], img1.shape[0]), |
||||
flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP |
||||
) |
||||
|
||||
return aligned_img, full_matrix, rotation_angle |
||||
except: |
||||
return img2, None, None |
||||
|
||||
def downscale_image(img, factor): |
||||
"""Downscale image by specified factor while preserving aspect ratio""" |
||||
if factor <= 1: |
||||
return img.copy() |
||||
|
||||
height, width = img.shape[:2] |
||||
new_size = (int(width/factor), int(height/factor)) |
||||
|
||||
# Use area interpolation for downscaling (best for reduction) |
||||
return cv2.resize(img, new_size, interpolation=cv2.INTER_AREA) |
||||
|
||||
def rotate_image(image, angle): |
||||
"""Rotate image by specified angle (0, 90, 180, or 270 degrees)""" |
||||
if angle == 90: |
||||
return cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE) |
||||
elif angle == 180: |
||||
return cv2.rotate(image, cv2.ROTATE_180) |
||||
elif angle == 270: |
||||
return cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE) |
||||
return image |
||||
|
||||
def try_ecc_alignment(target, moving): |
||||
"""Try ECC alignment and return aligned image, matrix, and correlation coefficient""" |
||||
# Initialize warp matrix |
||||
warp_matrix = np.eye(2, 3, dtype=np.float32) |
||||
|
||||
# Set criteria |
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 1000, 1e-6) |
||||
|
||||
try: |
||||
# Run ECC |
||||
cc, warp_matrix = cv2.findTransformECC( |
||||
target, moving, warp_matrix, cv2.MOTION_AFFINE, criteria |
||||
) |
||||
|
||||
# Apply the transformation |
||||
aligned = cv2.warpAffine( |
||||
moving, warp_matrix, (target.shape[1], target.shape[0]), |
||||
flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP |
||||
) |
||||
|
||||
return aligned, warp_matrix, cc |
||||
except: |
||||
return moving, None, 0 |
||||
|
||||
def apply_transform(image, matrix, target_shape): |
||||
"""Apply transformation matrix to color image""" |
||||
if matrix is None: |
||||
return image |
||||
|
||||
if matrix.shape == (2, 3): # Affine |
||||
return cv2.warpAffine( |
||||
image, matrix, (target_shape[1], target_shape[0]), |
||||
flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP |
||||
) |
||||
elif matrix.shape == (3, 3): # Homography |
||||
return cv2.warpPerspective( |
||||
image, matrix, (target_shape[1], target_shape[0]), |
||||
flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP |
||||
) |
||||
return image |
||||
|
||||
def align_ecc(img1, img2): |
||||
# Convert to grayscale |
||||
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) |
||||
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) |
||||
|
||||
# Define motion model (affine or homography) |
||||
warp_mode = cv2.MOTION_AFFINE # or cv2.MOTION_HOMOGRAPHY |
||||
|
||||
if warp_mode == cv2.MOTION_HOMOGRAPHY: |
||||
warp_matrix = np.eye(3, 3, dtype=np.float32) |
||||
else: |
||||
warp_matrix = np.eye(2, 3, dtype=np.float32) |
||||
|
||||
# Specify termination criteria |
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 1000, 1e-6) |
||||
|
||||
# Run ECC |
||||
try: |
||||
cc, warp_matrix = cv2.findTransformECC( |
||||
gray1, gray2, warp_matrix, warp_mode, criteria |
||||
) |
||||
|
||||
if warp_mode == cv2.MOTION_HOMOGRAPHY: |
||||
aligned_img = cv2.warpPerspective( |
||||
img2, warp_matrix, (img1.shape[1], img1.shape[0]) |
||||
) |
||||
else: |
||||
aligned_img = cv2.warpAffine( |
||||
img2, warp_matrix, (img1.shape[1], img1.shape[0]) |
||||
) |
||||
|
||||
return aligned_img, warp_matrix |
||||
except: |
||||
print("Alignment failed") |
||||
return img2, None |
||||
|
||||
def align_with_ecc_and_rotation(img1, img2, try_common_rotations=True): |
||||
""" |
||||
Aligns img2 to img1 using ECC, with optional pre-testing of common rotations |
||||
|
||||
Args: |
||||
img1: Reference image (numpy array) |
||||
img2: Image to align (numpy array) |
||||
try_common_rotations: If True, tests common rotations first |
||||
|
||||
Returns: |
||||
aligned_img: Aligned version of img2 |
||||
transform_matrix: Transformation matrix used |
||||
rotation_angle: Detected rotation angle (None if not a simple rotation) |
||||
""" |
||||
# Convert to grayscale for alignment |
||||
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) |
||||
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) |
||||
|
||||
if try_common_rotations: |
||||
# Test common rotations first |
||||
best_cc = -1 |
||||
best_aligned = None |
||||
best_matrix = None |
||||
best_angle = None |
||||
|
||||
for angle in [0, 90, 180, 270]: |
||||
# Rotate the image |
||||
rotated = rotate_image(gray2, angle) |
||||
|
||||
# Try ECC alignment |
||||
aligned, matrix, cc = try_ecc_alignment(gray1, rotated) |
||||
|
||||
if cc > best_cc: |
||||
best_cc = cc |
||||
best_aligned = aligned |
||||
best_matrix = matrix |
||||
best_angle = angle if angle != 0 else None |
||||
|
||||
if best_cc > 0.3: # Good enough alignment found |
||||
# Apply the same transformation to color image |
||||
if best_angle is not None: |
||||
rotated_color = rotate_image(img2, best_angle) |
||||
else: |
||||
rotated_color = img2 |
||||
|
||||
if best_matrix is not None: |
||||
aligned_color = apply_transform(rotated_color, best_matrix, img1.shape) |
||||
else: |
||||
aligned_color = rotated_color |
||||
|
||||
return aligned_color, best_matrix, best_angle |
||||
|
||||
# If no good rotation found or try_common_rotations=False, do regular ECC |
||||
aligned_img, transform_matrix = align_ecc(img1, img2) |
||||
return aligned_img, transform_matrix, None |
||||
|
||||
def matrix_similarity_score(matrix): |
||||
""" |
||||
Calculate similarity score based on deviation from identity matrix. |
||||
Returns 1 for perfect match (identity), decreasing towards 0 for large transformations. |
||||
""" |
||||
if matrix is None: |
||||
return 0.0 # Alignment failed |
||||
|
||||
# For affine matrix (2x3) |
||||
if matrix.shape == (2, 3): |
||||
ideal = np.eye(2, 3, dtype=np.float32) |
||||
# Normalize translation components by image dimensions (assuming 1000px as reference) |
||||
normalized_matrix = matrix.copy() |
||||
normalized_matrix[:, 2] /= 1000.0 |
||||
# For homography matrix (3x3) |
||||
elif matrix.shape == (3, 3): |
||||
ideal = np.eye(3, dtype=np.float32) |
||||
normalized_matrix = matrix.copy() |
||||
normalized_matrix[:, 2] /= 1000.0 # Normalize translation |
||||
else: |
||||
return 0.0 |
||||
|
||||
# Calculate Frobenius norm of difference |
||||
diff = np.linalg.norm(normalized_matrix - ideal) |
||||
|
||||
# Convert to similarity score (0-1) |
||||
score = np.exp(-diff) # Exponential decay |
||||
return float(np.clip(score, 0, 1)) |
||||
|
||||
def decomposed_similarity_score(matrix, img_width): |
||||
""" |
||||
Calculate score by analyzing translation, rotation, and scaling separately. |
||||
img_width is used to normalize translation to image dimensions. |
||||
""" |
||||
if matrix is None: |
||||
return 0.0 |
||||
|
||||
# Decompose affine matrix |
||||
if matrix.shape == (2, 3): |
||||
# Extract rotation and scale |
||||
a, b, c, d = matrix[0,0], matrix[0,1], matrix[1,0], matrix[1,1] |
||||
scale_x = np.sqrt(a*a + b*b) |
||||
scale_y = np.sqrt(c*c + d*d) |
||||
rotation = np.arctan2(-b, a) |
||||
|
||||
# Extract translation (normalized by image width) |
||||
tx = matrix[0,2] / img_width |
||||
ty = matrix[1,2] / img_width |
||||
else: |
||||
return 0.0 |
||||
|
||||
# Calculate penalties (adjust weights as needed) |
||||
translation_penalty = np.sqrt(tx*tx + ty*ty) * 0.5 # Weight translation more |
||||
scale_penalty = np.abs(scale_x - 1) + np.abs(scale_y - 1) |
||||
rotation_penalty = np.abs(rotation) / np.pi # Normalized to 0-1 |
||||
|
||||
# Combine penalties |
||||
total_penalty = translation_penalty + scale_penalty + rotation_penalty |
||||
|
||||
# Convert to similarity score |
||||
return max(0, 1 - total_penalty) |
||||
|
||||
def comprehensive_similarity(img1, img2, matrix): |
||||
"""Combine matrix analysis with image comparison""" |
||||
# 1. Matrix-based score (50% weight) |
||||
matrix_score = matrix_similarity_score(matrix) |
||||
|
||||
# 2. Pixel-based score after alignment (50% weight) |
||||
if matrix is not None: |
||||
aligned = cv2.warpAffine(img2, matrix, (img1.shape[1], img1.shape[0])) |
||||
pixel_score = normalized_cross_correlation(img1, aligned) |
||||
else: |
||||
pixel_score = 0.0 |
||||
|
||||
return 0.5 * matrix_score + 0.5 * pixel_score |
||||
|
||||
def normalized_cross_correlation(img1, img2): |
||||
"""Calculate NCC between two images""" |
||||
# Convert to grayscale |
||||
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY).astype(np.float32) |
||||
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY).astype(np.float32) |
||||
|
||||
# Normalize |
||||
gray1 = (gray1 - np.mean(gray1)) / (np.std(gray1) + 1e-8) |
||||
gray2 = (gray2 - np.mean(gray2)) / (np.std(gray2) + 1e-8) |
||||
|
||||
# Calculate correlation |
||||
return np.mean(gray1 * gray2) |
||||
|
||||
def find_duplicate_with_rotation(img1, img2): |
||||
# Initialize ORB detector |
||||
orb = cv2.ORB_create() |
||||
|
||||
# Find keypoints and descriptors |
||||
kp1, des1 = orb.detectAndCompute(img1, None) |
||||
kp2, des2 = orb.detectAndCompute(img2, None) |
||||
|
||||
# Create BFMatcher object |
||||
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) |
||||
|
||||
# Match descriptors |
||||
matches = bf.match(des1, des2) |
||||
|
||||
# Sort matches by distance |
||||
matches = sorted(matches, key=lambda x: x.distance) |
||||
|
||||
# Return similarity score (lower is more similar) |
||||
return len(matches) |
||||
|
||||
def get_image_dimensions_cv(img): |
||||
if img is not None: |
||||
height, width = img.shape[:2] |
||||
return width, height |
||||
return None, None |
||||
|
||||
""" |
||||
xxhash is about 5–10x faster than SHA256, non-cryptographic. |
||||
If you want an even lighter setup (no installs), we can use zlib.crc32 instead — |
||||
but xxhash is better if you care about collisions! |
||||
""" |
||||
def quick_file_hash(file_path): |
||||
hasher = xxhash.xxh64() # 64-bit very fast hash |
||||
try: |
||||
with open(file_path, 'rb') as f: |
||||
while chunk := f.read(8192): # Read in 8KB chunks |
||||
hasher.update(chunk) |
||||
except Exception as e: |
||||
print(f"Error hashing file: {e}") |
||||
return hasher.hexdigest() |
||||
Loading…
Reference in new issue